Teleosts as models for human vertebral stability and deformity.

نویسندگان

  • Kristen F Gorman
  • Felix Breden
چکیده

Vertebral development is a dynamic and complicated process, and defects can be caused by a variety of influences. Spinal curvature with no known cause (idiopathic scoliosis) affects 2-3% of the human population. In order to understand the etiology and pathogenesis of complex human skeletal defects such as idiopathic scoliosis, multiple models must be used to study all of the factors affecting vertebral stability and deformity. Although fish and humans have many of the same types of offenses to vertebral integrity, they have been overlooked as a resource for study. The most common morphological deformity reported for fish are those that occur during the development of the spinal system, and as with humans, curvature is a common morphological consequence. Here we review spinal curvature in teleosts and suggest that they are an unexploited resource for understanding the basic elements of vertebral stability, deformity, development and genetics. Fish can be a value to vertebral research because they are tractable, have a diversity of non-induced vertebral deformities, and substantial genomic resources. Current animal models lack non-induced deformities and the experimental tractability necessary for genetic studies. The fact that fish are free of an appendicular skeleton should allow for analysis of basic spinal integrity without the biomechanical constraints observed in quadrupedal and bipedal models. To illustrate the point we review human idiopathic scoliosis and the potential contribution teleosts can make for the identification of causes, risk factors, and treatment options.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single posterior approach for vertebral column resection in adults with severe rigid kyphosis

 Abstract Background: Correction of severe kyphosis is a challenging operation in spinal surgery. A two stage operation has been commonly used: anterior release and decompression followed by posterior correction and fusion. We describe the posterior vertebral osteotomy technique for correction of severe and rigid kyphosis through posterior-only approach. Methods: Twelve patients (six male and s...

متن کامل

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

The mutant guppy syndrome curveback as a model for human heritable spinal curvature.

STUDY DESIGN This study investigated the morphology, pathogenesis, and inheritance of idiopathic-like spinal curvature in the guppy syndrome, curveback. OBJECTIVE To determine whether curveback could be applied as a model for the primary factors that contribute to heritable spinal curvature in humans, specifically, the etiopathogenesis of human familial idiopathic scoliosis. SUMMARY OF BACK...

متن کامل

An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity

BACKGROUND Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may require surgical correction by attaching a rod to the patient's spine using screws implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the deformity by applying compressive forces across the intervertebral disc spaces while they secure the rod to the vertebra. We were interest...

متن کامل

Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model

BACKGROUND The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature that develops during growth. Prior work has revealed several important developmental similarities to the human idiopathic scoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that are associated with spinal curvature in the curveback gupp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP

دوره 145 1  شماره 

صفحات  -

تاریخ انتشار 2007